Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Measure of the some angles in the figure are given.
Prove that,
AP/AB = AQ/QC​

Measure Of The Some Angles In The Figure Are GivenProve ThatAPAB AQQC class=

Sagot :

Step-by-step explanation:

Proof :-

Given that

In ∆ ABC, PQ is a line drawn on AB and AC

In ∆ APQ and ∆ ABC

∠ APQ = ∠ ABC = 60°

∠ PAQ = ∠ BAC (Common vertex angle )

By AA similarity criteria

∆ APQ and ∆ ABC are similar triangles

=> ∆ APQ ~ ∆ ABC

We Know that

If two polygons of same number of sides are said to be similar,

If the corresponding angles are equal.

If the corresponding sides are in the same ratio or in proportion.

So, The corresponding angles are mist be in proportion

=> AP / PB = AQ/QC

Hence, Proved.

Used formulae:-

If two polygons of same number of sides are said to be similar,

If the corresponding angles are equal.

If the corresponding sides are in the same ratio or in proportion.

Note :-

If PQ || BC then by Basic Proportionality Theorem, AP/PB = AQ/QB

If a line drawn parallel to one side of a triangle intersecting other two sides at two different points and the line divides the other sides in the same ratio.