Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The equation of the tangent to L at the point p(3/2, [tex]\sqrt[/tex]7/2) will be equal to y+[tex]\sqrt[/tex]7x/3=0
What is tangent?
A straight line or plane that touches a curve or curved surface at a point, but if extended does not cross it at that point.
It is given that the equation of a circle is given by:
[tex]x^2+y^2=4[/tex]
Slope formula: If a line passes through two points, then the slope of the line is
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
The endpoints of the radius are O(0,0) and P( 3/2,[tex]\sqrt[/tex]7/2). So, the slope of the radius is
Now by putting the values in the formula:
[tex]m=\dfrac{\dfrac{3}{2}-0}{\dfrac{\sqrt{7}}{2}-0}[/tex]
[tex]m=\dfrac{3}{\sqrt{7}}[/tex]
Now the Product of slopes of two perpendicular lines is always -1.
Let the slope of tangent line l is m. Then, the product of slopes of line l and radius is -1.
[tex]m\times m_1=-1[/tex]
[tex]m_1\times \dfrac {3}{\sqrt{7}}=-1[/tex]
[tex]m_1=\dfrac{-\sqrt{7}}{3}}[/tex]
The slope of line l is -[tex]\sqrt[/tex]7/3 and it passes through point P(3/2,[tex]\sqrt[/tex]7/2). So, the equation of line l is
[tex]y-y_2=m(x-x_2)[/tex]
[tex]y-\dfrac{\sqrt{7}}{2}=\dfrac{-\sqrt{7}}{3}(x-\dfrac{3}{2})[/tex]
[tex]y-\dfrac{\sqrt{7}}{2}=\dfrac{-\sqrt{7}}{3}x-\dfrac{-\sqrt{7}}{3} \times \dfrac{3}{2})[/tex]
[tex]y=\dfrac{-\sqrt{7}}{3}x[/tex]
Hence the tangent to L at the point P will have a slope of [tex]y=\dfrac{-\sqrt{7}}{3}x[/tex]
To know more about Tangent follow
https://brainly.com/question/4470346
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.