Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
$y=\frac{-2}{9}x+\frac{61}$
Step-by-step explanation:
For two lines to be parallel to each other, it means they have to have the same slope. So, the question is really asking for the line through $(8, 5)$ that has the same slope as the line shown.
We can start by finding the slope of the line shown. Recall that given two points $(x_{1}, y_{1})$ and $(x_{2}, y_{2})$, the slope of the line between them is $\frac{y_{2}-y_{1}}{x_{2}-x{1}}$, or more commonly remembered as rise over run. Plugging in the points $(-3, 1)$ and $(6, -1)$ into the equation for the slope, we see that the slope of the line shown is $\frac{-1-1}{6-(-3)}=\frac{-2}{9}$.
We recall that the point-slope form of a line is such that given a point $(x_{1}, y_{1})$ and the slope $m$, the equation for a line with that slope through the given point is $y-y_{1}=m(x-x_{1})$(Note: divide by $x-x_{1}$. What does that remind you of?). Plugging in our point and slope, we have that the equation for the line we want is $y-5=\frac{-2}{9}(x-8)$. Expanding the right-hand side gives $y-5=\frac{-2}{9}x+\frac{16}{9}$.
Adding $5$ to both sides gives the desired $\boxed{y=\frac{-2}{9}x+\frac{61}}$
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.