Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​

Lim Nn N N Nⁿ1ⁿ 2ⁿ 3ⁿ Nⁿ class=

Sagot :

Step-by-step explanation:

[tex]\large\underline{\sf{Solution-}}[/tex]

Given expression is

[tex]\rm :\longmapsto\:\displaystyle\lim_{n \to \infty} \frac{n + {n}^{2} + {n}^{3} + - - + {n}^{n} }{ {1}^{n} + {2}^{n} + {3}^{n} + - - + {n}^{n} } [/tex]

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

[tex]\rm :\longmapsto\:n + {n}^{2} + {n}^{3} + - - - + {n}^{n} [/tex]

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

[tex]\rm \:  =  \: \dfrac{n( {n}^{n} - 1)}{n - 1} [/tex]

[tex]\rm \:  =  \: \dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} } [/tex]

Now, Consider Denominator, we have

[tex]\rm :\longmapsto\: {1}^{n} + {2}^{n} + {3}^{n} + - - - + {n}^{n} [/tex]

can be rewritten as

[tex]\rm :\longmapsto\: {1}^{n} + {2}^{n} + {3}^{n} + - - - + {(n - 1)}^{n} + {n}^{n} [/tex]

[tex]\rm \:  =  \: {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg][/tex]

[tex]\rm \:  =  \: {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg][/tex]

Now, Consider

[tex]\rm :\longmapsto\:\displaystyle\lim_{n \to \infty} \frac{n + {n}^{2} + {n}^{3} + - - + {n}^{n} }{ {1}^{n} + {2}^{n} + {3}^{n} + - - + {n}^{n} } [/tex]

So, on substituting the values evaluated above, we get

[tex]\rm \:  =  \: \displaystyle\lim_{n \to \infty} \frac{\dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]

[tex]\rm \:  =  \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n} - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]

[tex]\rm \:  =  \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]

[tex]\rm \:  =  \: \displaystyle\lim_{n \to \infty} \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]

[tex]\rm \:  =  \: \displaystyle\lim_{n \to \infty} \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]} [/tex]

Now, we know that,

[tex]\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x} = {e}^{k}}}} [/tex]

So, using this, we get

[tex]\rm \:  =  \: \dfrac{1}{1 + {e}^{ - 1} + {e}^{ - 2} + - - - - \infty } [/tex]

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

[tex]\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } } [/tex]

[tex]\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } } [/tex]

[tex]\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} } [/tex]

[tex]\rm \:  =  \: \dfrac{e - 1}{e} [/tex]

[tex]\rm \:  =  \: 1 - \dfrac{1}{e} [/tex]

Hence,

[tex]\boxed{\tt{ \displaystyle\lim_{n \to \infty} \frac{n + {n}^{2} + {n}^{3} + - - + {n}^{n} }{ {1}^{n} + {2}^{n} + {3}^{n} + - - + {n}^{n} } = \frac{e - 1}{e} = 1 - \frac{1}{e}}}[/tex]