At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

70 POINTS PLEASE HELP ASAP

The linear functions f(x) and g(x) are represented on the graph, where g(x) is a transformation of f(x):

A graph with two linear functions; f of x passes through 1, 3 and 3, 13, and g of x passes through negative 1, 3 and 1, 13.

Part A: Describe two types of transformations that can be used to transform f(x) to g(x). (2 points)

Part B: Solve for k in each type of transformation. (4 points)

Part C: Write an equation for each type of transformation that can be used to transform f(x) to g(x). (4 points)


Sagot :

Answer:

Part A: The two types of types of transformation are

1) Rotation of 11.3° about (1, 2)

2) By algebraic transformation

Part B:

Rotation by 11.3° and T(2 - y)×1/2 + x, 0)

Part C: The transformation that can be used to transform f(x) to g(x) is T(2 - y)×1/2 + x, 0)

Step-by-step explanation:

The coordinates through which the linear function f(x) passes = (1. 3) and (3, 13)

The coordinates through which the linear function g(x) passes = (1, 3) and (1, 13)

The equation for f(x) in slope and intercept form. y = m·x + c is given as follows;

The slope, m = (13 - 3)/(3 - 1) = 5

The equation in point and slope form is y - 3 = 5×(x -1)

y = 5·x - 5 + 3 = 5·x - 3

y = 5·x - 3

The equation for g(x) in slope and intercept form. y = m·x + c is given as follows;

The slope, m = (13 - 3)/(1 - 1) = ∞

∴ The equation in point and slope form is x = 1

Therefore, the two equations meet at the point (1, 2)

The transformation that can be used to transform f(x) to g(x) is T(2 - y)×1/2 + x, 0)

2) Another transformation that can be used is to rotate f(x) by the vertex angle as follows

Vertex angle is 90° - tan⁻¹(m) = 90° - tan⁻¹(5) ≈ 11.3°

Rotation of f(x) by 11.3° about (1, 2) gives g(x)

Step-by-step explanation: