Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Step-by-step explanation:
Given Question
Prove that,
[tex]\displaystyle\lim_{x \to \infty }\rm \bigg[1 + {\dfrac{1}{x} }\bigg]^{x} = e[/tex]
[tex] \red{\large\underline{\sf{Solution-}}}[/tex]
Consider,
[tex]\rm :\longmapsto\:\displaystyle\lim_{x \to \infty }\rm \bigg[1 + {\dfrac{1}{x} }\bigg]^{x}[/tex]
Let assume that
[tex]\rm :\longmapsto\:y = \displaystyle\lim_{x \to \infty }\rm \bigg[1 + {\dfrac{1}{x} }\bigg]^{x}[/tex]
Taking log on both sides, we get
[tex]\rm :\longmapsto\: log_{e}(y) = \displaystyle\lim_{x \to \infty }\rm log_{e} \bigg[1 + {\dfrac{1}{x} }\bigg]^{x}[/tex]
We know,
[tex] \red{\rm :\longmapsto\:\boxed{\tt{ log {x}^{y} = y \: logx}}}[/tex]
So, using this, we get
[tex]\rm :\longmapsto\: log_{e}(y) = \displaystyle\lim_{x \to \infty }\rm xlog_{e} \bigg[1 + {\dfrac{1}{x} }\bigg][/tex]
We know,
[tex]\rm :\longmapsto\:\boxed{\tt{ log_{e}(1 + x) = x - \dfrac{ {x}^{2} }{2} + \dfrac{ {x}^{3} }{3} + - - - - }}[/tex]
So, using this, we get
[tex]\rm :\longmapsto\: log_{e}(y) = \displaystyle\lim_{x \to \infty }\rm x \bigg[\dfrac{1}{x} - {\dfrac{1}{ {2x}^{2} } + \dfrac{1}{ {3x}^{3}} - \dfrac{1}{ {4x}^{4} } + - - - }\bigg][/tex]
So, using this ,we get
[tex]\rm :\longmapsto\: log_{e}(y) = \displaystyle\lim_{x \to \infty }\rm \bigg[1 - {\dfrac{1}{ 2x } + \dfrac{1}{ {3x}^{2}} - \dfrac{1}{ {4x}^{3} } + - - - }\bigg][/tex]
[tex]\rm :\longmapsto\: log_{e}(y) = 1[/tex]
[tex]\bf\implies \:y = e[/tex]
[tex]\bf\implies \:\:\displaystyle\lim_{x \to \infty }\rm \bigg[1 + {\dfrac{1}{x} }\bigg]^{x} = e[/tex]
Hence, Proved
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Additional Information
[tex]\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm \frac{sinx}{x} = 1}}[/tex]
[tex]\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm \frac{tanx}{x} = 1}}[/tex]
[tex]\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm \frac{log(1 + x)}{x} = 1}}[/tex]
[tex]\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm \frac{ {e}^{x} - 1}{x} = 1}}[/tex]
[tex]\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm \frac{ {a}^{x} - 1}{x} = loga}}[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.