Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
See below
Step-by-step explanation:
Considering [tex]$\vec{u}, \vec{v}, \vec{w} \in V^3 \lambda \in \mathbb{R}$[/tex], then
[tex]\Vert \vec{u} \cdot \vec{v}\Vert \leq \Vert\vec{u}\Vert \Vert\vec{v}\Vert$ we have $(\vec{u} \cdot \vec{v})^2 \leq (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}) \quad$[/tex]
This is the Cauchy–Schwarz Inequality, therefore
[tex]$\left(\sum_{i=1}^{n} u_i v_i \right)^2 \leq \left(\sum_{i=1}^{n} u_i \right)^2 \left(\sum_{i=1}^{n} v_i \right)^2 $[/tex]
We have the equation
[tex]\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b} = \dfrac{1}{a+b}, a,b\in\mathbb{N}[/tex]
We can use the Cauchy–Schwarz Inequality because [tex]a[/tex] and [tex]b[/tex] are greater than 0. In fact, [tex]a>0 \wedge b>0 \implies ab>0[/tex]. Using the Cauchy–Schwarz Inequality, we have
[tex]\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b} =\dfrac{(\sin^2 x)^2}{a}+\dfrac{(\cos^2 x)}{b}\geq \dfrac{(\sin^2 x+\cos^2 x)^2}{a+b} = \dfrac{1}{a+b}[/tex]
and the equation holds for
[tex]\dfrac{\sin^2{x}}{a}=\dfrac{\cos^2{x}}{b}=\dfrac{1}{a+b}[/tex]
[tex]\implies\quad \sin^2 x = \dfrac{a}{a+b} \text{ and }\cos^2 x = \dfrac{b}{a+b}[/tex]
Therefore, once we can write
[tex]\sin^2 x = \dfrac{a}{a+b} \implies \sin^{4n}x = \dfrac{a^{2n}}{(a+b)^{2n}} \implies\dfrac{\sin^{4n}x }{a^{2n-1}} = \dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}[/tex]
It is the same thing for cosine, thus
[tex]\cos^2 x = \dfrac{b}{a+b} \implies \dfrac{\cos^{4n}x }{b^{2n-1}} = \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}}[/tex]
Once
[tex]\dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}+ \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}} =\dfrac{a^{2n}}{(a+b)^{2n} \cdot \dfrac{a^{2n}}{a} } + \dfrac{b^{2n}}{(a+b)^{2n}\cdot \dfrac{b^{2n}}{b} }[/tex]
[tex]=\dfrac{1}{(a+b)^{2n} \cdot \dfrac{1}{a} } + \dfrac{1}{(a+b)^{2n}\cdot \dfrac{1}{b} } = \dfrac{a}{(a+b)^{2n} } + \dfrac{b}{(a+b)^{2n} } = \dfrac{a+b}{(a+b)^{2n} }[/tex]
dividing both numerator and denominator by [tex](a+b)[/tex], we get
[tex]\dfrac{a+b}{(a+b)^{2n} } = \dfrac{1}{(a+b)^{2n-1} }[/tex]
Therefore, it is proved that
[tex]\dfrac{\sin ^{4n} x }{a^{2n-1}} + \dfrac{\cos^{4n} x }{b^{2n-1}} = \dfrac{1}{(a+b)^{2n-1}}, a,b\in\mathbb{N}[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.