Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
See below
Step-by-step explanation:
Considering [tex]$\vec{u}, \vec{v}, \vec{w} \in V^3 \lambda \in \mathbb{R}$[/tex], then
[tex]\Vert \vec{u} \cdot \vec{v}\Vert \leq \Vert\vec{u}\Vert \Vert\vec{v}\Vert$ we have $(\vec{u} \cdot \vec{v})^2 \leq (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}) \quad$[/tex]
This is the Cauchy–Schwarz Inequality, therefore
[tex]$\left(\sum_{i=1}^{n} u_i v_i \right)^2 \leq \left(\sum_{i=1}^{n} u_i \right)^2 \left(\sum_{i=1}^{n} v_i \right)^2 $[/tex]
We have the equation
[tex]\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b} = \dfrac{1}{a+b}, a,b\in\mathbb{N}[/tex]
We can use the Cauchy–Schwarz Inequality because [tex]a[/tex] and [tex]b[/tex] are greater than 0. In fact, [tex]a>0 \wedge b>0 \implies ab>0[/tex]. Using the Cauchy–Schwarz Inequality, we have
[tex]\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b} =\dfrac{(\sin^2 x)^2}{a}+\dfrac{(\cos^2 x)}{b}\geq \dfrac{(\sin^2 x+\cos^2 x)^2}{a+b} = \dfrac{1}{a+b}[/tex]
and the equation holds for
[tex]\dfrac{\sin^2{x}}{a}=\dfrac{\cos^2{x}}{b}=\dfrac{1}{a+b}[/tex]
[tex]\implies\quad \sin^2 x = \dfrac{a}{a+b} \text{ and }\cos^2 x = \dfrac{b}{a+b}[/tex]
Therefore, once we can write
[tex]\sin^2 x = \dfrac{a}{a+b} \implies \sin^{4n}x = \dfrac{a^{2n}}{(a+b)^{2n}} \implies\dfrac{\sin^{4n}x }{a^{2n-1}} = \dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}[/tex]
It is the same thing for cosine, thus
[tex]\cos^2 x = \dfrac{b}{a+b} \implies \dfrac{\cos^{4n}x }{b^{2n-1}} = \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}}[/tex]
Once
[tex]\dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}+ \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}} =\dfrac{a^{2n}}{(a+b)^{2n} \cdot \dfrac{a^{2n}}{a} } + \dfrac{b^{2n}}{(a+b)^{2n}\cdot \dfrac{b^{2n}}{b} }[/tex]
[tex]=\dfrac{1}{(a+b)^{2n} \cdot \dfrac{1}{a} } + \dfrac{1}{(a+b)^{2n}\cdot \dfrac{1}{b} } = \dfrac{a}{(a+b)^{2n} } + \dfrac{b}{(a+b)^{2n} } = \dfrac{a+b}{(a+b)^{2n} }[/tex]
dividing both numerator and denominator by [tex](a+b)[/tex], we get
[tex]\dfrac{a+b}{(a+b)^{2n} } = \dfrac{1}{(a+b)^{2n-1} }[/tex]
Therefore, it is proved that
[tex]\dfrac{\sin ^{4n} x }{a^{2n-1}} + \dfrac{\cos^{4n} x }{b^{2n-1}} = \dfrac{1}{(a+b)^{2n-1}}, a,b\in\mathbb{N}[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.