Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Can someone help me out !

got stuck in this question for an hour.




Can Someone Help Me Out Got Stuck In This Question For An Hour class=

Sagot :

Answer:

See below

Step-by-step explanation:

Considering [tex]$\vec{u}, \vec{v}, \vec{w} \in V^3 \lambda \in \mathbb{R}$[/tex], then

[tex]\Vert \vec{u} \cdot \vec{v}\Vert \leq \Vert\vec{u}\Vert \Vert\vec{v}\Vert$ we have $(\vec{u} \cdot \vec{v})^2 \leq (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}) \quad$[/tex]

This is the Cauchy–Schwarz  Inequality, therefore

[tex]$\left(\sum_{i=1}^{n} u_i v_i \right)^2 \leq \left(\sum_{i=1}^{n} u_i \right)^2 \left(\sum_{i=1}^{n} v_i \right)^2 $[/tex]

We have the equation

[tex]\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b} = \dfrac{1}{a+b}, a,b\in\mathbb{N}[/tex]

We can use the Cauchy–Schwarz  Inequality because [tex]a[/tex] and [tex]b[/tex] are greater than 0. In fact, [tex]a>0 \wedge b>0 \implies ab>0[/tex]. Using the Cauchy–Schwarz  Inequality, we have

[tex]\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b} =\dfrac{(\sin^2 x)^2}{a}+\dfrac{(\cos^2 x)}{b}\geq \dfrac{(\sin^2 x+\cos^2 x)^2}{a+b} = \dfrac{1}{a+b}[/tex]

and the equation holds for

[tex]\dfrac{\sin^2{x}}{a}=\dfrac{\cos^2{x}}{b}=\dfrac{1}{a+b}[/tex]

[tex]\implies\quad \sin^2 x = \dfrac{a}{a+b} \text{ and }\cos^2 x = \dfrac{b}{a+b}[/tex]

Therefore, once we can write

[tex]\sin^2 x = \dfrac{a}{a+b} \implies \sin^{4n}x = \dfrac{a^{2n}}{(a+b)^{2n}} \implies\dfrac{\sin^{4n}x }{a^{2n-1}} = \dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}[/tex]

It is the same thing for cosine, thus

[tex]\cos^2 x = \dfrac{b}{a+b} \implies \dfrac{\cos^{4n}x }{b^{2n-1}} = \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}}[/tex]

Once

[tex]\dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}+ \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}} =\dfrac{a^{2n}}{(a+b)^{2n} \cdot \dfrac{a^{2n}}{a} } + \dfrac{b^{2n}}{(a+b)^{2n}\cdot \dfrac{b^{2n}}{b} }[/tex]

[tex]=\dfrac{1}{(a+b)^{2n} \cdot \dfrac{1}{a} } + \dfrac{1}{(a+b)^{2n}\cdot \dfrac{1}{b} } = \dfrac{a}{(a+b)^{2n} } + \dfrac{b}{(a+b)^{2n} } = \dfrac{a+b}{(a+b)^{2n} }[/tex]

dividing both numerator and denominator by [tex](a+b)[/tex], we get

[tex]\dfrac{a+b}{(a+b)^{2n} } = \dfrac{1}{(a+b)^{2n-1} }[/tex]

Therefore, it is proved that

[tex]\dfrac{\sin ^{4n} x }{a^{2n-1}} + \dfrac{\cos^{4n} x }{b^{2n-1}} = \dfrac{1}{(a+b)^{2n-1}}, a,b\in\mathbb{N}[/tex]