Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Can someone help me out !

got stuck in this question for an hour.




Can Someone Help Me Out Got Stuck In This Question For An Hour class=

Sagot :

Answer:

See below

Step-by-step explanation:

Considering [tex]$\vec{u}, \vec{v}, \vec{w} \in V^3 \lambda \in \mathbb{R}$[/tex], then

[tex]\Vert \vec{u} \cdot \vec{v}\Vert \leq \Vert\vec{u}\Vert \Vert\vec{v}\Vert$ we have $(\vec{u} \cdot \vec{v})^2 \leq (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}) \quad$[/tex]

This is the Cauchy–Schwarz  Inequality, therefore

[tex]$\left(\sum_{i=1}^{n} u_i v_i \right)^2 \leq \left(\sum_{i=1}^{n} u_i \right)^2 \left(\sum_{i=1}^{n} v_i \right)^2 $[/tex]

We have the equation

[tex]\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b} = \dfrac{1}{a+b}, a,b\in\mathbb{N}[/tex]

We can use the Cauchy–Schwarz  Inequality because [tex]a[/tex] and [tex]b[/tex] are greater than 0. In fact, [tex]a>0 \wedge b>0 \implies ab>0[/tex]. Using the Cauchy–Schwarz  Inequality, we have

[tex]\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b} =\dfrac{(\sin^2 x)^2}{a}+\dfrac{(\cos^2 x)}{b}\geq \dfrac{(\sin^2 x+\cos^2 x)^2}{a+b} = \dfrac{1}{a+b}[/tex]

and the equation holds for

[tex]\dfrac{\sin^2{x}}{a}=\dfrac{\cos^2{x}}{b}=\dfrac{1}{a+b}[/tex]

[tex]\implies\quad \sin^2 x = \dfrac{a}{a+b} \text{ and }\cos^2 x = \dfrac{b}{a+b}[/tex]

Therefore, once we can write

[tex]\sin^2 x = \dfrac{a}{a+b} \implies \sin^{4n}x = \dfrac{a^{2n}}{(a+b)^{2n}} \implies\dfrac{\sin^{4n}x }{a^{2n-1}} = \dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}[/tex]

It is the same thing for cosine, thus

[tex]\cos^2 x = \dfrac{b}{a+b} \implies \dfrac{\cos^{4n}x }{b^{2n-1}} = \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}}[/tex]

Once

[tex]\dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}+ \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}} =\dfrac{a^{2n}}{(a+b)^{2n} \cdot \dfrac{a^{2n}}{a} } + \dfrac{b^{2n}}{(a+b)^{2n}\cdot \dfrac{b^{2n}}{b} }[/tex]

[tex]=\dfrac{1}{(a+b)^{2n} \cdot \dfrac{1}{a} } + \dfrac{1}{(a+b)^{2n}\cdot \dfrac{1}{b} } = \dfrac{a}{(a+b)^{2n} } + \dfrac{b}{(a+b)^{2n} } = \dfrac{a+b}{(a+b)^{2n} }[/tex]

dividing both numerator and denominator by [tex](a+b)[/tex], we get

[tex]\dfrac{a+b}{(a+b)^{2n} } = \dfrac{1}{(a+b)^{2n-1} }[/tex]

Therefore, it is proved that

[tex]\dfrac{\sin ^{4n} x }{a^{2n-1}} + \dfrac{\cos^{4n} x }{b^{2n-1}} = \dfrac{1}{(a+b)^{2n-1}}, a,b\in\mathbb{N}[/tex]

We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.