Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
Principal,P` = Rs 55,000
Rate of Interest,R`= 102\dfrac{10} {2}
2 -10= 5%
Time,t` = 2×2\times2× 1= 2 years.
So,
Principle Amount Will be =>
A` =P‘(1+R100)t‘P`(1 + \dfrac{R}{100})^{t`}P‘(1+
100R) t‘
=> A`= 55,000(1+5100)255,000(1 + \dfrac{5} {100})^{2}55,000(1+
100. 5) 2
=> A`= 55,000(105100)255,000(\dfrac{105} {100})^255,000(
100---(105) 2
=>A` = Rs 60,637.5.
Hence the the compound interest in second case is
Rs (60,637.5 - 50,000)=Rs 5,647.5
So the change in Compound interest in second case
=Rs(5,647.5 - 5000)
=Rs 647.5
So the percentage of change in Compound interest in first and second years Will be =>
Change% = increase in interest Original Interest×100%\dfrac{increase in interest}{Original Interest} \times 100\%
OriginalInterest
increaseininterest
×100%
=> Change% = 647.55000×100%\dfrac{647.5} {5000}\times 100\%
5000
647.5
×100%
=>Change% = 12.95%12.95 \%12.95%
Remember
A=P(1+R100)tA = P(1 + \dfrac{R}{100})^{t}A=P(1+
Explanation:
hope it helps ...
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.