At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Just to offer an alternative solution, let
[tex]f(x) = x + x(1-x^2) + x(1-x^2)^2 + \cdots = \displaystyle \sum_{n=0}^\infty x(1-x^2)^n[/tex]
Let F(x) denote the antiderivative of f(x). Then by the fundamental theorem of calculus, we can write, for instance,
[tex]F(x) = f(1) + \displaystyle \int_1^x f(t)\,\mathrm dt[/tex]
When x = 1, all terms in the sum corresponding to n ≥ 1 vanish, so that f (1) = 1.
Integrating the series and interchanging the sum and integral (terms and conditions apply - see Fubini's theorem) gives
[tex]\displaystyle \int f(x)\,\mathrm dx = \int \sum_{n=0}^\infty x(1-x^2)^n\,\mathrm dx = C + \sum_{n=0}^\infty \int x(1-x^2)^n\,\mathrm dx[/tex]
The constant C here corresponds exactly to f (1).
In the integral, substitute
[tex]y = 1-x^2 \implies \mathrm dy = -2x\,\mathrm dx[/tex]
so that it transforms and reduces to
[tex]\displaystyle -\frac12 \int y^n\,\mathrm dy = -\frac1{2(n+1)} y^{n+1} = -\frac1{2(n+1)}(1-x^2)^n[/tex]
Then we have
[tex]F(x) = 1 - \displaystyle \frac12 \sum_{n=0}^\infty \frac{(1-x^2)^{n+1}}{n+1}[/tex]
and by shifting the index to make the sum start at n = 1,
[tex]F(x) = 1 - \displaystyle \frac12 \sum_{n=1}^\infty \frac{(1-x^2)^n}n[/tex]
or equivalently,
[tex]F(x) = 1 - \displaystyle \frac12 \sum_{n=1}^\infty \frac{(-(x^2-1))^n}n[/tex]
Recall the Maclaurin expansion for ln(x) centered at x = 1, valid for |x - 1| < 1 :
[tex]\ln(x) = \displaystyle -\sum_{n=1}^\infty \frac{(-(x - 1))^n}n[/tex]
By comparing to this series, we observe that the series in F(x) converges to
[tex]\displaystyle -\sum_{n=1}^\infty \frac{(-(x^2-1))^n}n = \ln(x^2)[/tex]
so long as |x ² - 1| < 1. Then
[tex]F(x) = 1 + \dfrac12 \ln(x^2) = 1 + \ln(x)[/tex]
Differentiate both sides to recover f(x) = 1/x .
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.