Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

using de moivre's theorem to find square roots of (2-2√ 3 i) ​

Sagot :

Let z = 2 - 2√3 i. In polar form, we have

[tex]z = |z| e^{i\arg(z)}[/tex]

where

[tex]|z| = |2-2\sqrt3| = \sqrt{2^2 + (-2\sqrt3)^2} = 4[/tex]

[tex]\arg(z) = \tan^{-1}\left(-\dfrac{2\sqrt3}2\right) = -\tan^{-1}(\sqrt3) = -\dfrac\pi3[/tex]

Equivalently,

[tex]z = 4\left(\cos\left(-\dfrac\pi3\right) + i\sin\left(-\dfrac\pi3\right)\right)[/tex]

Let w be a complex number such that w ² = z. By DeMoivre's theorem,

[tex]z = 4\left(\cos\left(-\dfrac\pi3\right) + i\sin\left(-\dfrac\pi3\right)\right) \\\\ \implies z^{1/2} = 4^{1/2} \left(\cos\left(\dfrac{-\frac\pi3+2k\pi}{2}\right) + i \sin\left(\dfrac{-\frac\pi3+2k\pi}{2}\right)\right)[/tex]

where k ∈ {0, 1}. So the two square roots of z are

[tex]z^{1/2} = \begin{cases}2\left(\cos\left(-\dfrac\pi6\right) + i\sin\left(-\dfrac\pi6\right)\right) & \text{for }k=0 \\\\ 2\left(\cos\left(\dfrac{5\pi}6\right) + i\sin\left(\dfrac{5\pi}6\right)\right) & \text{for }k=1\end{cases}[/tex]

[tex]z^{1/2} = \begin{cases}2\left(\dfrac{\sqrt3}2 - \dfrac12 i\right) & \text{for }k=0 \\\\ 2\left(-\dfrac{\sqrt3}2 + \dfrac12 i\right) & \text{for }k=1\end{cases}[/tex]

[tex]\boxed{z^{1/2} = \begin{cases}\sqrt3 - i & \text{for }k=0 \\ -\sqrt3 + i & \text{for }k=1\end{cases}}[/tex]