Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The mean, median and mode are measures of central tendency, that is they tend to indicate the location middle of the data
Required values;
(a) The performance for the week for Park Street
- Revenue is Q₂ < $7,500 < Q₃
- The sales for the week is better than 72.91% of all sales
The performance for the week for Bridge Road
- Revenue; Q₂ < $7,100 < Q₃
- The sale for the week is better than 59.87% of all sales
(b) The mean is $3611
The median is $3,600
The standard deviation is $3250
The Interquartile range is $6075
Reason:
The table of values that maybe used to find a solution to the question is given as follows;
[tex]\begin{array}{|l|l|l|}\mathbf{Variable} &\mathbf{Park}&\mathbf{Bridge}\\N&36&40\\Mean&6611&5989\\SE \ Mean&597&299\\StDev&3580&1794\\Minimum&800&1800\\Q_1&3600&5225\\Median&6600&6000\\Q_3&9675&7625\\Maximum&14100&8600\end{array}\right][/tex]
(a) Park Street revenue = $7,500
Bridge Road's revenue = $7,100
The two stores sold close to but below the 75th percentile
Bridge Road revenue;
The z-score is given as follows;
[tex]Z = \dfrac{x - \mu }{\sigma }[/tex]
- [tex]Z = \dfrac{7100 - 5,989 }{1794 } \approx 0.6193[/tex]
From the Z-Table, we have;
The percentile= 0.7291
- Therefore, the sale for the week for Park Street is better than 72.91% of all the sales
Park Street revenue;
The z-score is given as follows;
- [tex]Z = \dfrac{7500 - 6611}{3580} \approx 0.25[/tex]
From the Z-Table, we have;
The percentile = 0.5987
- Therefore, the sale for the week is better than 59.87 % of all the sales
(b) Given that the operating cost is $3,000, frim which we have;
The subtracted value is subtracted from the mean and median to find the new value
Profit = The revenue - Cost
New mean = 6611 - 3000 = 3611
- The new mean = $3,611
The new median = 6600 - 3000 = 3600
- The new median = $3,600
The standard deviation and the interquartile range remain the same, therefore, we have;
- The standard deviation = $3,580
The interquartile range = 9675 - 3600 = 6075
- The interquartile range = 6075
Learn more here:
https://brainly.com/question/21133077
https://brainly.com/question/23305909
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.