Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Testing the hypothesis, it is found that the p-value of the test is 0.017 < 0.05, which means that we can conclude that the red shirt increases his chances of winning.
At the null hypothesis, we test if the proportion is of 40%, that is:
[tex]H_0: p = 0.4[/tex]
At the alternative hypothesis, we test if the proportion is greater than 40%, that is:
[tex]H_1: p > 0.4[/tex]
The test statistic is:
[tex]Z = \frac{X - p}{s}[/tex]
In which:
- X is the sample proportion.
- p is the value tested at the null hypothesis.
- s is the standard error, given by:
[tex]s = \sqrt{\frac{p(1 - p)}{n}}[/tex]
With n as the sample size.
In this problem:
- 0.4 is tested at the null hypothesis, thus [tex]p = 0.4[/tex].
- Won 3 out of 3, thus [tex]n = 3, X = \frac{3}{3} = 1[/tex].
- The standard error is:
[tex]s = \sqrt{\frac{0.4(0.6)}{3}} = 0.283[/tex]
The value of the test statistic is:
[tex]Z = \frac{X - p}{s}[/tex]
[tex]Z = \frac{1 - 0.4}{0.283}[/tex]
[tex]Z = 2.12[/tex]
The p-value is the probability of finding a sample proportion of 1 or "above", which is 1 subtracted by the p-value of Z = 2.12.
- Looking at the z-table, Z = 2.12 has a p-value of 0.983.
- 1 - 0.983 = 0.017.
The p-value of the test is 0.017 < 0.05, which means that we can conclude that the red shirt increases his chances of winning.
A similar problem is given at https://brainly.com/question/24166849
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.