Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
If you're like me and don't remember hyperbolic identities (especially involving inverse functions) off the top of your head, recall the definitions of the hyperbolic cosine and sine:
[tex]\cosh(x) = \dfrac{e^x + e^{-x}}2 \\\\ \sinh(x) = \dfrac{e^x - e^{-x}}2[/tex]
Then differentiating yields
[tex]\dfrac{\mathrm d(\cosh(x))}{\mathrm dx} = \dfrac{e^x-e^{-x}}2 = \sinh(x) \\\\ \dfrac{\mathrm d(\sinh(x))}{\mathrm dx} = \dfrac{e^x+e^{-x}}2 = \cosh(x)[/tex]
so that by the chain rule, if
[tex]y = \cosh\left(4\tanh^{-1}(x)\right)[/tex]
then
[tex]\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{\mathrm d\left(\cosh\left(4\tanh^{-1}(x)\right)\right)}{\mathrm dx} = \sinh\left(4\tanh^{-1}(x)\right) \dfrac{\mathrm d\left(4\tanh^{-1}(x)\right)}{\mathrm dx}[/tex]
Now, let [tex]z=4\tanh^{-1}(x)[/tex], so that (•) [tex]\tanh\left(\frac z4\right) = x[/tex].
Recall that
[tex]\tanh(x) = \dfrac{\sinh(x)}{\cosh(x)} = \dfrac{e^x-e^{-x}}{e^x+e^{-x}}[/tex]
and so the derivative of tanh(x) is
[tex]\dfrac{\mathrm d(\tanh(x))}{\mathrm dx} = \dfrac{(e^x+e^{-x})(e^x+e^{-x})-(e^x-e^{-x})(e^x-e^{-x})}{(e^x+e^{-x})^2} \\\\ = \dfrac{4\cosh^2(x)-4\sinh^2(x)}{4\cosh^2(x)} \\\\ = 1-\tanh^2(x) = \mathrm{sech}^2(x)[/tex]
where the last equality follows from the hyperbolic Pythagorean identity,
[tex]\cosh^2(x)-\sinh^2(x) = 1 \implies 1-\tanh^2(x) = \mathrm{sech}^2(x)[/tex]
Differentiating both sides of (•) implicitly with respect to x gives
[tex]\dfrac{\mathrm d\left(\tanh\left(\frac z4\right)\right)}{\mathrm dx} = \dfrac{\mathrm d(x)}{\mathrm dx} \\\\ \mathrm{sech}^2\left(\dfrac z4\right)\dfrac{\mathrm d\left(\frac z4\right)}{\mathrm dx} = 1 \\\\ \dfrac14 \mathrm{sech}^2\left(\dfrac z4\right) \dfrac{\mathrm dz}{\mathrm dx} = 1 \\\\ \dfrac{\mathrm dz}{\mathrm dx} = 4\cosh^2\left(\dfrac z4\right) \\\\ \dfrac{\mathrm dz}{\mathrm dx} = 4\cosh^2\left(\tanh^{-1}(x)\right)[/tex]
So, the derivative we want is the somewhat messy expression
[tex]\boxed{\dfrac{\mathrm dy}{\mathrm dx} = 4\sinh\left(4\tanh^{-1}(x)\right) \cosh^2\left(\tanh^{-1}(x)\right)}[/tex]
and while this could be simplified into a rational expression of x, I would argue for leaving the solution in this form considering how y is given in this form from the start.
In case you are interested, we have
[tex]\cosh\left(\tanh^{-1}(x)\right) = \dfrac1{\sqrt{1-x^2}}[/tex]
and you can instead work on differentiating that; you would end up with
[tex]\dfrac{\mathrm dy}{\mathrm dx} = -\dfrac{16x^3+16x}{(x^2-1)^3}[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.