Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Using the inverse function, it is found that the equation is:
[tex]P(t) = \frac{e^{0.1t}}{50} + 20[/tex]
It's initial value is 20.
---------------------------
We want to find the inverse of:
[tex]y = P^{-1}(t) = 10\ln{50t - 1000}[/tex]
To do this, we exchange y and t, and isolate y.
Then:
[tex]10\ln{50y - 1000} = t[/tex]
[tex]\ln{50y - 1000} = \frac{t}{10}[/tex]
[tex]e^{\ln{50y - 1000}} = e^{0.1t}[/tex]
[tex]50y - 1000 = e^{0.1t}[/tex]
[tex]50y = e^{0.1t} + 1000[/tex]
[tex]y = \frac{e^{0.1t} + 1000}{50}[/tex]
[tex]y = \frac{e^{0.1t}}{50} + \frac{1000}{50}[/tex]
[tex]P(t) = \frac{e^{0.1t}}{50} + 20[/tex]
It's initial value is:
[tex]P(0) = \frac{e^{0.1(0)}}{50} + 20 = 0.02 + 20 = 20.02[/tex]
Rounding, 20.
A similar problem is given at https://brainly.com/question/23950969
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.