Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Many ectotherms show crossing growth trajectories as a plastic response to rearing temperature. As a result, individuals growing up in cool conditions grow slower, mature later, but are larger at maturation than those growing up in warm conditions. To date, no entirely satisfactory explanation has been found for why this pattern, often called the temperature-size rule, should exist. Previous theoretical models have assumed that size-specific mortality rates were most likely to drive the pattern. Here, I extend one theoretical model to show that variation in size-fecundity relationships may also be important. Plasticity in the size-fecundity relationship has rarely been considered, but a number of studies show that fecundity increases more quickly with size in cold environments than it does in warm environments. The greater increase in fecundity offsets costs of delayed maturation in cold environments, favoring a larger size at maturation. This can explain many cases of crossing growth trajectories, not just in relation to temperature.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.