Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Using the hypergeometric distribution, it is found that there is a 0.7568 = 75.68% probability that neither can wiggle his or her ears.
The people are chosen from the sample without replacement, which is why the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- N is the size of the population.
- n is the size of the sample.
- k is the total number of desired outcomes.
In this problem:
- 1000 people means that [tex]N = 1000[/tex]
- 130 can wiggle their ears, thus [tex]k = 130[/tex]
- Two are selected, thus [tex]n = 2[/tex].
The probability that neither can wiggle his or her ears is P(X = 0), thus:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = x) = h(0,1000,2,130) = \frac{C_{130,0}C_{870,2}}{C_{1000,2}} = 0.7568[/tex]
0.7568 = 75.68% probability that neither can wiggle his or her ears.
A similar problem is given at https://brainly.com/question/24826394
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.