Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Using the hypergeometric distribution, it is found that there is a 0.7568 = 75.68% probability that neither can wiggle his or her ears.
The people are chosen from the sample without replacement, which is why the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- N is the size of the population.
- n is the size of the sample.
- k is the total number of desired outcomes.
In this problem:
- 1000 people means that [tex]N = 1000[/tex]
- 130 can wiggle their ears, thus [tex]k = 130[/tex]
- Two are selected, thus [tex]n = 2[/tex].
The probability that neither can wiggle his or her ears is P(X = 0), thus:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = x) = h(0,1000,2,130) = \frac{C_{130,0}C_{870,2}}{C_{1000,2}} = 0.7568[/tex]
0.7568 = 75.68% probability that neither can wiggle his or her ears.
A similar problem is given at https://brainly.com/question/24826394
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.