Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Given: with median segments , , and Prove: Medians meet at point O. It is given that has median segments , , and . Because ___________, then , , and . The ratios of to is 1, of to is 1, and of to is 1 by substitution. Therefore, , , and are similar to each other. Then the medians meet at point O. What is the reasoning for the second step? A. medians intersect at multiple points B. medians divide each side of the triangle into two parts C. medians intersect at one point D. medians divide each side of the triangle in half

Sagot :

Answer:

A:medians divide each side of the triangle in half

Step-by-step explanation:

on plato