Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The minimum coefficient of static friction between the pavement and the tires is 0.69.
The given parameters;
- radius of the curve, r = 90 m
- angle of inclination, θ = 10.8⁰
- speed of the car, v = 75 km/h = 20.83 m/s
- mass of the car, m = 1100 kg
The normal force on the car is calculated as follows;
[tex]F_n = mgcos(\theta)[/tex]
The frictional force between the car and the road is calculated as;
[tex]F_k = \mu_k F_n\\\\F_k = \mu_k mgcos(\theta)[/tex]
The net force on the car is calculated as follows;
[tex]mgsin(\theta) + \mu_s mgcos(\theta) = \frac{mv^2}{r} \\\\mg(sin\theta \ + \ \mu_s cos\theta)= \frac{mv^2}{r} \\\\g(sin\theta \ + \ \mu_s cos\theta)= \frac{v^2}{r}\\\\sin\theta \ + \ \mu_s cos\theta = \frac{v^2}{rg}\\\\\mu_s cos\theta = sin\theta \ + \ \frac{v^2}{rg}\\\\\mu_s = \frac{sin\theta}{cos \theta} + \frac{v^2}{cos (\theta)rg}\\\\\mu_s = tan(\theta) + \frac{v^2}{cos (\theta)rg}\\\\\mu_s = tan(10.8) + \frac{(20.83)^2}{cos(10.8) \times 90 \times 9.8} \\\\\mu_s = 0.19 + 0.5\\\\[/tex]
[tex]\mu_s = 0.69[/tex]
Thus, the minimum coefficient of static friction between the pavement and the tires is 0.69.
Learn more here:https://brainly.com/question/15415163
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.