At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Using the t-distribution, it is found that the 95% confidence interval for the mean number of people the houses were shown is (20.1, 27.9).
We have the standard deviation for the sample, hence the t-distribution is used to build the confidence interval. Important information are given by:
- Sample mean of [tex]\overline{x} = 24[/tex].
- Sample standard deviation of [tex]s = 9[/tex].
- Sample size of [tex]n = 23[/tex]
The confidence interval is:
[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]
In which t is the critical value for a 95% confidence interval with 23 - 1 = 22 df, thus, looking at a calculator or at the t-table, it is found that t = 2.0739.
Then:
[tex]\overline{x} - t\frac{s}{\sqrt{n}} = 24 - 2.0739\frac{9}{\sqrt{23}} = 20.1[/tex]
[tex]\overline{x} + t\frac{s}{\sqrt{n}} = 24 + 2.0739\frac{9}{\sqrt{23}} = 27.9[/tex]
The 95% confidence interval for the mean number of people the houses were shown is (20.1, 27.9).
A similar problem is given at https://brainly.com/question/15180581
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.