Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Using the binomial distribution, it is found that there is a 0.375 = 37.5% probability of having exactly 1 girl.
For each children, there are only two possible outcomes. Either it is a boy, or it is a girl. The probability of a children being a girl is independent of any other children, which means that the binomial distribution is used to solve this question.
Binomial probability distribution
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 3 children, thus [tex]n = 3[/tex]
- Equally as likely to be a girl or a boy, thus [tex]p = 0.5[/tex].
The probability of exactly 1 girl is P(X = 1), thus:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 1) = C_{3,1}.(0.5)^{1}.(0.5)^{2} = 0.375[/tex]
0.375 = 37.5% probability of having exactly 1 girl.
A similar problem is given at https://brainly.com/question/24863377
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.