Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The expression for the radius and height of the cone can be obtained from
the property of a function at the maximum point.
- [tex]The \ radius, \ of \ the \ base \ of \ the \ cone \ is \ \sqrt{ \dfrac{3}{4}} \times radius \ of \ circular \ sheet \ metal[/tex]
- The height of the cone is half the length of the radius of the circular sheet metal.
Reasons:
The part used to form the cone = A sector of a circle
The length of the arc of the sector = The perimeter of the circle formed by the base of the cone.
[tex]Volume \ of \ a \ cone = \dfrac{1}{3} \cdot \pi \cdot r^3 \cdot h[/tex]
- [tex]Volume \ of \ a \ cone, \, V = \dfrac{1}{3} \cdot \pi \cdot r^3 \cdot \sqrt{(s^2- r^2)}[/tex]
θ/360·2·π·s = 2·π·r
Where;
s = The radius of he circular sheet metal
h = s² - r²
- [tex]\dfrac{dV}{dr} = \dfrac{d}{dr} \left(\dfrac{1}{3} \cdot \pi \cdot r^3 \cdot \sqrt{(s^2- r^2)}\right) = \dfrac{\pi \cdot (3 \cdot r^2 \cdot s^2 - 4 \cdot r^4)}{\sqrt{(s^2- r^2)}} = 0[/tex]
3·r²·s² - 4·r⁴ = 0
3·r²·s² = 4·r⁴
3·s² = 4·r²
[tex]\underline{\left \right. The \ radius, \, r =\sqrt{ \dfrac{3}{4}} \cdot s}[/tex]
[tex]\underline{The \ height, \, h =\sqrt{s^2 - \dfrac{3}{4}\cdot s^2} = \dfrac{s}{2}}}[/tex]
Learn more here:
https://brainly.com/question/14466080
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.