Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Total resultant velocity=5.11-3.27=1.84m/s
- m_1=61.4kg
- m_2=109kg
- v_1=1.84m/s
- v_2=?
[tex]\\ \sf\longmapsto ∆P=P[/tex]
[tex]\\ \sf\longmapsto m_1v_1=m_2v_2[/tex]
[tex]\\ \sf\longmapsto v_2=\dfrac{m_1v_1}{m_2}[/tex]
[tex]\\ \sf\longmapsto v_2=\dfrac{61.4(1.84)}{109}[/tex]
[tex]\\ \sf\longmapsto v_2=112.976/109[/tex]
[tex]\\ \sf\longmapsto v_2\approx 1.3m/s[/tex]
The velocity of the plane and the pilot before the pilot jumps is 0.25 m/s.
The given parameters;
- mass of the pilot, m₁ = 61.4 kg
- velocity of the pilot, u₁ = 5.11 m/s backwards
- velocity of the plane, u₂ = 3.27 m/s forward
- mass of the plane, m₂ = 109 kg
The velocity of the plane and the pilot before the pilot jumps is calculated by applying the principle of conservation of linear momentum for inelastic collision as follows;
[tex]m_1u_1 + m_2u_2 = v(m_1 + m_2)\\\\61.4(-5.11) \ + \ 109(3.27) = v(61.4 + 109)\\\\42.68 = v(170.4)\\\\v = \frac{42.68}{170.4} \\\\v = 0.25 \ m/s[/tex]
Thus, the velocity of the plane and the pilot before the pilot jumps is 0.25 m/s.
Learn more about inelastic collision here: https://brainly.com/question/7694106
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.