Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Using the hypergeometric distribution, it is found that there is a 0.1667 = 16.67% probability that he selects the two good batteries.
The batteries are chosen from the sample without replacement, which is why the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- N is the size of the population.
- n is the size of the sample.
- k is the total number of desired outcomes.
In this problem:
- There are 4 batteries, thus [tex]N = 4[/tex].
- Sample of 2 batteries, thus [tex]n = 2[/tex]
- 2 are good, thus [tex]k = 2[/tex].
The probability that both are good is P(X = 2), thus:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 2) = h(2,4,2,2) = \frac{C_{2,2}C_{2,0}}{C_{4,2}} = 0.1667[/tex]
0.1667 = 16.67% probability that he selects the two good batteries.
A similar problem is given at https://brainly.com/question/24826394
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.