At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Here is a sketch of y=x^2+bx+c The curve intersects

Here Is A Sketch Of Yx2bxc The Curve Intersects class=

Sagot :

Answer:

y = 18  and  x = -2

Step-by-step explanation:

y = x^2+bx+c   To find the turning point, or vertex, of this parabola, we need to work out the values of the coefficients b and c. We are given two different solutions of the equation. First, (2, 0).  Second, (0, -14). So we have a value (-14) for c. We can substitute that into our first equation to find b. We can now plug in our values for b and c into the equation to get its standard form. To find the vertex, we can convert this equation to vertex form by completing the square. Thus, the vertex is (4.5, –6.25). We can confirm the solution graphically     Plugging in  (2,0) :

y=x2+bx+c  

0=(2)^2+b(2)+c  

y=4+2b+c  

-2b=4+c  

b=-2+2c  

Plugging in  (0,−14) :

y=x2+bx+c  

−14=(0)2+b(0)+c  

−16=0+b+c  

b=16−c  

Now that we have two equations isolated for  b , we can simply use substitution and solve for  c .   y=x2+bx+c  16 + 2 = y   y = 18  and  x = -2