At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Here is a sketch of y=x^2+bx+c The curve intersects

Here Is A Sketch Of Yx2bxc The Curve Intersects class=

Sagot :

Answer:

y = 18  and  x = -2

Step-by-step explanation:

y = x^2+bx+c   To find the turning point, or vertex, of this parabola, we need to work out the values of the coefficients b and c. We are given two different solutions of the equation. First, (2, 0).  Second, (0, -14). So we have a value (-14) for c. We can substitute that into our first equation to find b. We can now plug in our values for b and c into the equation to get its standard form. To find the vertex, we can convert this equation to vertex form by completing the square. Thus, the vertex is (4.5, –6.25). We can confirm the solution graphically     Plugging in  (2,0) :

y=x2+bx+c  

0=(2)^2+b(2)+c  

y=4+2b+c  

-2b=4+c  

b=-2+2c  

Plugging in  (0,−14) :

y=x2+bx+c  

−14=(0)2+b(0)+c  

−16=0+b+c  

b=16−c  

Now that we have two equations isolated for  b , we can simply use substitution and solve for  c .   y=x2+bx+c  16 + 2 = y   y = 18  and  x = -2

We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.