Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

The diagram below shows a pendulum in motion.

At what point(s) does the pendulum possess the least potential energy?
A. Points 1, 3, and 5 only
B. Points 2 and 4 only
C. Points 1 and 5 only
D. Point 3 only


The Diagram Below Shows A Pendulum In Motion At What Points Does The Pendulum Possess The Least Potential Energy A Points 1 3 And 5 Only B Points 2 And 4 Only C class=

Sagot :

Answer:

Potential Energy is given as:

P.E = mgh

which means P.E is directly proportional to height 'h'.

Kinetic Energy is given as:

K.E = (1/2)mv²

which means K.E is directly proportional to velocity 'v²'.

Total Energy of Pendulum = K.E + P.E

1. The pendulum has the most potential energy at extreme position because the height is maximum at the extreme position.

2. The pendulum has the least kinetic energy at extreme position because the velocity is zero at extreme position.

3. The pendulum has most kinetic energy at the mean position because the velocity is maximum at this point.

4. The pendulum has the least potential energy at the mean position because the height is minimum.

A rule to remember: The point where K.E is maximum, P.E is zero at this point and vice versa.Potential Energy is given as:

P.E = mgh

which means P.E is directly proportional to height 'h'.

Kinetic Energy is given as:

K.E = (1/2)mv²

which means K.E is directly proportional to velocity 'v²'.

Total Energy of Pendulum = K.E + P.E

1. The pendulum has the most potential energy at extreme position because the height is maximum at the extreme position.

2. The pendulum has the least kinetic energy at extreme position because the velocity is zero at extreme position.

3. The pendulum has most kinetic energy at the mean position because the velocity is maximum at this point.

4. The pendulum has the least potential energy at the mean position because the height is minimum.

A rule to remember: The point where K.E is maximum, P.E is zero at this point and vice versa.Potential Energy is given as:

P.E = mgh

which means P.E is directly proportional to height 'h'.

Kinetic Energy is given as:

K.E = (1/2)mv²

which means K.E is directly proportional to velocity 'v²'.

Total Energy of Pendulum = K.E + P.E

1. The pendulum has the most potential energy at extreme position because the height is maximum at the extreme position.

2. The pendulum has the least kinetic energy at extreme position because the velocity is zero at extreme position.

3. The pendulum has most kinetic energy at the mean position because the velocity is maximum at this point.

4. The pendulum has the least potential energy at the mean position because the height is minimum.

A rule to remember: The point where K.E is maximum, P.E is zero at this point and vice versa.

Explanation: