At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
If you project S onto the (x,y)-plane, it casts a "shadow" corresponding to the trapezoidal region
T = {(x,y) : 0 ≤ x ≤ 10 - y and -4 ≤ y ≤ 4}
Let z = f(x, y) = √(16 - y²) and z = g(x, y) = -√(16 - y²), each referring to one half of the cylinder to either side of the plane z = 0.
The surface element for the "positive" half is
dS = √(1 + (∂f/∂x)² + (∂f/dy)²) dx dy
dS = √(1 + 0 + 4y²/(16 - y²)) dx dy
dS = √((16 + 3y²)/(16 - y²)) dx dy
The the surface integral along this half is
[tex]\displaystyle \iint_T xz \,dS = \int_{-4}^4 \int_0^{10-y} x \sqrt{16-y^2} \sqrt{\frac{16+3y^2}{16-y^2}} \, dx \, dy[/tex]
[tex]\displaystyle \iint_T xz \,dS = \int_{-4}^4 \int_0^{10-y} x \sqrt{16+3y^2}\, dx \, dy[/tex]
[tex]\displaystyle \iint_T xz \,dS = \frac12 \int_{-4}^4 (10-y)^2 \sqrt{16+3y^2} \, dy[/tex]
[tex]\displaystyle \iint_T xz \,dS = 416\pi[/tex]
You'll find that the integral over the "negative" half has the same value, but multiplied by -1. Then the overall surface integral is 0.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.