Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
Domain: (-∞, ∞)
Range: (0,∞)
Step-by-step explanation:
Exponential functions are curves which approach a horizontal asymptote usually at y=0 or the x-axis unless a value has been added to it. If it has, the curve shifts. This function has addition on the exponent but not to the whole function so it does not change the asymptote. Its y - values remain between 0 and ∞. This is the range, the set of y values.
However, the range of exponentials can change based on the leading coefficient. If it is negative the graph flips upside down and its range goes to -∞. This doesn't have it either.
The addition to 1 on the exponent shifts the function to the left but doesn't change the range.
In exponential functions, the x values are usually not affected and all are included in the function. Even though it shifts, the domain doesn't change either. Its domain is (-∞, ∞).
Domain: (-∞, ∞)
Range: (0,∞)
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.