Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Information about concavity is contained in the second derivative of a function. Given f(x) = ax² + bx + c, we have
f'(x) = 2ax + b
and
f''(x) = 2a
Concavity changes at a function's inflection points, which can occur wherever the second derivative is zero or undefined. In this case, since a ≠ 0, the function's concavity is uniform over its entire domain.
(i) f is concave up when f'' > 0, which occurs when a > 0.
(ii) f is concave down when f'' < 0, and this is the case if a < 0.
In Mathematica, define f by entering
f[x_] := a*x^2 + b*x + c
Then solve for intervals over which the second derivative is positive or negative, respectively, using
Reduce[f''[x] > 0, x]
Reduce[f''[x] < 0, x]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.