Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Using the normal distribution and the central limit theorem, it is found that there is a 0.6328 = 63.28% probability that a random sample of 100 accounting graduates will provide an average that is within $902 of the population mean.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation given by [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]
Hence, the probability of sample having mean within M of the population mean is the p-value of [tex]Z = \frac{M}{\frac{\sigma}{\sqrt{n}}}[/tex] subtracted by the p-value of [tex]Z = -\frac{M}{\frac{\sigma}{\sqrt{n}}}[/tex].
In this problem, we suppose [tex]\sigma = 10000[/tex], and thus, with a sample of 100, we have that [tex]s = \frac{10000}{\sqrt{100}} = 1000[/tex].
- Within $902, hence [tex]M = 902[/tex].
[tex]Z = \frac{M}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]Z = \frac{902}{1000}[/tex]
[tex]Z = 0.902[/tex]
[tex]Z = 0.902[/tex] has a p-value of 0.8164.
[tex]Z = \frac{M}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]Z = -\frac{902}{1000}[/tex]
[tex]Z = -0.902[/tex]
[tex]Z = -0.902[/tex] has a p-value of 0.1836.
0.8164 - 0.1836 = 0.6328.
0.6328 = 63.28% probability that a random sample of 100 accounting graduates will provide an average that is within $902 of the population mean.
A similar problem is given at https://brainly.com/question/24663213
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.