Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The joint distribution of the numbers of the three colours in the sample without replacement is:
[tex]\mathbf{P(A=a,B=b,C=c) = \dfrac{\Big( ^{p}_{ A} \Big) \Big( ^{q}_{ B} \Big) \Big( ^{r}_{ C} \Big) }{ \mathbf{\Big( ^{p+q+r}_{ \ \ \ n} \Big) } }\ \ \ \ where; n = A+B+C}[/tex]
Let consider A, B, and C to denote the three variables that are black, white, and red balls in the sample.
i.e.
- n = A + B + C
Now, the numbers of ways 'n' balls are chosen without replacement in an urn that comprises of p black balls, q white balls, and r red balls can be computed as follows:
[tex]\mathbf{\implies \Big( ^{p+q+r}_{ \ \ \ n} \Big) }[/tex]
Now, the number of ways whereby A black balls can be chosen from p black balls is expressed as:
[tex]\mathbf{\implies \Big( ^{p}_{ A} \Big) }[/tex]
The number of ways whereby B white balls can be chosen from q white balls is expressed as:
[tex]\mathbf{\implies \Big( ^{q}_{ B} \Big) }[/tex]
The number of ways whereby C red balls can be chosen from r red balls is expressed as:
[tex]\mathbf{\implies \Big( ^{r}_{ C} \Big) }[/tex]
Therefore, we can conclude that the joint distribution of the numbers of the three colours in the sample without replacement is:
[tex]\mathbf{P(A=a,B=b,C=c) = \dfrac{\Big( ^{p}_{ A} \Big) \Big( ^{q}_{ B} \Big) \Big( ^{r}_{ C} \Big) }{ \mathbf{\Big( ^{p+q+r}_{ \ \ \ n} \Big) } }\ \ \ \ where; n = A+B+C}[/tex]
Learn more about joint distribution here:
https://brainly.com/question/17283589?referrer=searchResults
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.