Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
see below
Step-by-step explanation:
As sin(t) = -3 / 5 and in quadrant 4
so cos is positive
a) sin^2(t) + cos^2(t) = 1
(-3/5)^2 + cos^2(t) = 1
cos^2(t) = 1 - (9/25)
cos^2(t) = (25 - 9) / 25 = 16/25
cos(t) = +4/5
b) sin(2t) = 2 sin(t)cos(t)
= 2 * (-3/5) * (4/5)
= -24/25
c) cos(2t) = cos^(t) - sin^2(t)
= (4/5)^2 - (-3/5)^2
= 16/25 - 9 / 25
= 7 / 25
d) tan(2t) = sin(2t) / cos(2t)
= (-24/25) / (7/25)
= -24/7
e) as sin(2t) is negative and cos(2t) is positive
2t is in Quadrant 4
I am not sure for below three
f) cos(t) = cos^2(1/2 t) - sin^2(1/2 t) = 4/5
cos^2(1/2 t) + sin^2(1/2 t) = 1
by adding and solving
1 + 4/5 = 2 * cos^2(1/2 t)
9/10 = cos^2(1/2 t)
cos(1/2 t) = +- 3/[tex]\sqrt{10}[/tex]
and sin(t) = 2 * sin(1/2 t) * cos(1/2 t) = -3/5
2 * sin(1/2 t) * 3/sqrt{10} = -3/5
sin(1/2 t) = +- 1/sqrt{10}
means here sin and cos for 1/2 t should be opposite signs
so it is either 2nd or 4th quadrant
g) sin( 1/2 t) = +-1/sqrt{10}
h) cos(1/2 t) = +- 3/sqrt{10}
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.