Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Compute the derivative dy/dx using the power, product, and chain rules. Given
x³ + y³ = 11xy
differentiate both sides with respect to x to get
3x² + 3y² dy/dx = 11y + 11x dy/dx
Solve for dy/dx :
(3y² - 11x) dy/dx = 11y - 3x²
dy/dx = (11y - 3x²)/(3y² - 11x)
The tangent line to the curve is horizontal when the slope dy/dx = 0; this happens when
11y - 3x² = 0
or
y = 3/11 x²
(provided that 3y² - 11x ≠ 0)
Substitute y into into the original equation:
x³ + (3/11 x²)³ = 11x (3/11 x²)
x³ + (3/11)³ x⁶ = 3x³
(3/11)³ x⁶ - 2x³ = 0
x³ ((3/11)³ x³ - 2) = 0
One (actually three) of the solutions is x = 0, which corresponds to the origin (0,0). This leaves us with
(3/11)³ x³ - 2 = 0
(3/11 x)³ - 2 = 0
(3/11 x)³ = 2
3/11 x = ³√2
x = (11•³√2)/3
Solving for y gives
y = 3/11 x²
y = 3/11 ((11•³√2)/3)²
y = (11•³√4)/3
So the only other point where the tangent line is horizontal is ((11•³√2)/3, (11•³√4)/3).
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.