Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
[tex]15^{n-1}[/tex]
Step-by-step explanation:
First , Let's find the common ratio of this sequence.
[tex]\frac{15}{3}=5\\\frac{75}{15} = 5\\\frac{375}{75} = 5[/tex]
SO,
r = 5
Now let's use this formula to find the n th term
[tex]T_n = ar^{n-1}[/tex]
Here,
a = first term
r = common ratio
Let's find,
[tex]T_n = 3*5^{n-1}[/tex]
[tex]T_n =15^{n-1}[/tex]
Therefore,
the n th term is,
[tex]15^{n-1}[/tex]
Hope this helps you.
Let me know if you have any other questions :-)
Answer:
[tex]a_{n}[/tex] = 3[tex](5)^{n-1}[/tex]
Step-by-step explanation:
There is a common ratio between consecutive terms , that is
15 ÷ 3 = 75 ÷ 15 = 375 ÷ 75 = 5
This indicates the sequence is geometric with nth term
[tex]a_{n}[/tex] = a₁ [tex](r)^{n-1}[/tex]
where a₁ is the first term and r the common ratio
Here a₁ = 3 and r = 5 , then
[tex]a_{n}[/tex] = 3 [tex](5)^{n-1}[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.