Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
Perpendicular
Step-by-step explanation:
B. Their slopes (or gradients). To determine whether two lines on a plane are parallel or perpendicular, we need to examine what their slopes are. You can do this by using: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex].
So for the first line, it'll be: [tex]m_1 = \frac{0-4}{2-0} = \frac{-4}{2} = -2[/tex]
And for the second line, it'll be: [tex]m_2 = \frac{2-3}{-4-(-2)}=\frac{-1}{-2} = \frac{1}{2}[/tex]
If two lines are parallel, their slopes will be the same. If two lines are perpendicular, one line's slope will be the negative reciprocal of the other; this means you can express the relationship between the two slopes [tex]m_a[/tex] and [tex]m_b[/tex] as [tex]m_a = \frac{-1}{m_b}[/tex].
So we can see immediately the two lines aren't parallel, since the two slopes are different (one is -2 and the other is 1/2). However, they are perpendicular since if we do [tex]m_a = \frac{-1}{m_b}[/tex] where [tex]m_a = \frac{1}{2}[/tex] and [tex]m_b = -2[/tex], we see that the equation is true ([tex]\frac{1}{2} = \frac{-1}{-2}[/tex]).
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.