Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
Perpendicular
Step-by-step explanation:
B. Their slopes (or gradients). To determine whether two lines on a plane are parallel or perpendicular, we need to examine what their slopes are. You can do this by using: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex].
So for the first line, it'll be: [tex]m_1 = \frac{0-4}{2-0} = \frac{-4}{2} = -2[/tex]
And for the second line, it'll be: [tex]m_2 = \frac{2-3}{-4-(-2)}=\frac{-1}{-2} = \frac{1}{2}[/tex]
If two lines are parallel, their slopes will be the same. If two lines are perpendicular, one line's slope will be the negative reciprocal of the other; this means you can express the relationship between the two slopes [tex]m_a[/tex] and [tex]m_b[/tex] as [tex]m_a = \frac{-1}{m_b}[/tex].
So we can see immediately the two lines aren't parallel, since the two slopes are different (one is -2 and the other is 1/2). However, they are perpendicular since if we do [tex]m_a = \frac{-1}{m_b}[/tex] where [tex]m_a = \frac{1}{2}[/tex] and [tex]m_b = -2[/tex], we see that the equation is true ([tex]\frac{1}{2} = \frac{-1}{-2}[/tex]).
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.