Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
If [tex]y=x^{\log_2(x)}[/tex], then taking the logarithm of both sides gives
[tex]\ln(y) = \ln\left(x^{\log_2(x)}\right) = \log_2(x) \ln(x)[/tex]
Differentiate both sides with respect to x :
[tex]\dfrac{d\ln(y)}{dx} = \dfrac{d\log_2(x)}{dx}\ln(x) + \log_2(x)\dfrac{d\ln(x)}{dx}[/tex]
[tex]\dfrac1y \dfrac{dy}{dx} = \dfrac{d\log_2(x)}{dx}\ln(x) + \dfrac{\log_2(x)}{x}[/tex]
Now if [tex]z=\log_2(x)[/tex], then [tex]2^z=x[/tex]. Rewrite
[tex]2^z = e^{\ln(2^z)} = e^{\ln(2)z}[/tex]
Then by the chain rule,
[tex]\dfrac{d2^z}{dx} = \dfrac{dx}{dx}[/tex]
[tex]\dfrac{de^{\ln(2)z}}{dx} = 1[/tex]
[tex]e^{\ln(2)z} \ln(2) \dfrac{dz}{dx}= 1[/tex]
[tex]\dfrac{dz}{dx} = \dfrac{1}{e^{\ln(2)z}\ln(2)}[/tex]
[tex]\dfrac{dz}{dx} = \dfrac{1}{2^z \ln(2)}[/tex]
[tex]\dfrac{d\log_2(x)}{dx} = \dfrac{1}{\ln(2)x}[/tex]
So we have
[tex]\dfrac1y \dfrac{dy}{dx} = \dfrac{\ln(x)}{\ln(2)x}+ \dfrac{\log_2(x)}{x}[/tex]
[tex]\dfrac1y \dfrac{dy}{dx} = \dfrac{\log_2(x)}{x}+ \dfrac{\log_2(x)}{x}[/tex]
[tex]\dfrac1y \dfrac{dy}{dx} = \dfrac{2\log_2(x)}{x}[/tex]
[tex]\dfrac1y \dfrac{dy}{dx} = \dfrac{\log_2(x^2)}{x}[/tex]
[tex]\dfrac{dy}{dx} = \dfrac{y\log_2(x^2)}{x}[/tex]
Replace y :
[tex]\dfrac{dy}{dx} = \dfrac{x^{\log_2(x)}\log_2(x^2)}{x}[/tex]
[tex]\dfrac{dy}{dx} = x^{\log_2(x)-1}\log_2(x^2)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.