Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
La fórmula: P = W/t ó W = P x t. donde:
P = potencia
W = trabajo
t = tiempo
Otra fórmula de potencia es: P= I x V
Proceso de carga de un capacitor - condensador
Una fórmula muy importante que también hay que tener en cuenta es: V = q/C que indica que el voltaje es proporcional a la carga que hay en un condensador.
De la fórmula de potencia P= I x V y considerando que la corriente es constante (corriente continua), entonces la potencia es proporcional al voltaje. Si el voltaje aumenta en forma lineal, la potencia aumentará igual. Ver el siguiente diagrama.
Como la potencia varía en función del tiempo, no se puede aplicar la fórmula W = P x t, para calcular la energía transferida. Pero observando el gráfico, se ve que esta energía se puede determinar midiendo el área bajo la curva de la figura.
Energía Almacenada en un Condensador - Capacitor
El área bajo la curva es igual a la mitad de la potencia en el momento “t”, multiplicada por “t”.
Entonces: W = (P x t) / 2. Pero se sabe que P = V x I. Si se reemplaza esta última fórmula en la anterior se obtiene: W = (V x I x t) / 2, y como I x t = CV = Q, entonces para saber cuanta energía (W) hay en un condensador usamos una de las siguientes fórmulas:
W = (CV2/2) julios
W = (QV/2) julios
W = (Q2/2C) julios
, donde:
W = Trabajo (Energía) en julios
C = Capacidad en faradios
V = voltaje en voltios en los extremos del condensador
Q = carga del condensador
Answer with the given explanations below: First the given formula that looks like this is: or where:
P = power
W = work
t = time
Next with another given power formula that looks like this is:
This is the charging process of a capacitor - capacitor #1.
Then it's a very important given formula that it must also be taken into account is: which it was indicated that the voltage is proportional to the charge on a capacitor.
In the following below, from the given power formula that looks like this is: and we are considering that the current is the constant (direct current), and then the power is proportional to the voltage. If the voltage increases linearly, the power will increase the same. See the following diagram. (I'm sorry, Yhungbabe, I don't have the diagram to show you in order to refer to the total energy stored in the capacitor because I havenèt learned the energy stored in the capacitor)
Anyway, since the power varies as a function of the time, the given formula that looks like this is: cannot be applied to calculate the energy transferred. But looking at the graph, it seems that this energy can also be determined by measuring the area under the curve of the figure.
This is The Energy Stored in a Capacitor - Capacitor #2.
The area under the curve is equal to the half of the power at time "t", being multiplied by "t".
Then with the given formula below that looks like this is:
But it's known that If this is the last given formula is being replaced in the previous one, we obtain the new given formula that looks like this is: and as another new given formula that looks like this is: there's so to find out how much energy (W) that there's in a capacitor that we use in one of the new given formulas that looks like in the listed below are:
joules
joules
joules
Now finally where:
W = Work (In The Energy) in Joules
C = Capacity in the farads
V = voltage in the volts at the ends of the capacitor
Q = a capacitor charge
I apologize for the late answer and the replies, so anyway, I use the online language translator in order to translate Spanish to English for you in order to understand my work given below, so, I hope my answer with the given explanation below here is very helpful to your own question about how to calculate the total energy stored in the capacitor with the image has been provided, please mark me as Brainliest and have a great rest of the day! :D
Sincerely,
Jason Ta,
The Ambitious of The Brainly And The Role of The TDSB And WHCI Student of The High School.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.