Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Step-by-step explanation:
[tex]\large\underline{\sf{Solution-}}[/tex]
Given integral is
[tex] \displaystyle\int\rm \frac{{\bigg( x\bigg) }^{\dfrac{1}{2} }}{1 + {\bigg( x \bigg) }^{\dfrac{3}{4} }} \: dx [/tex]
To evaluate this integral, we have to first remove the fractional exponents from the integrand.
So, we substitute
[tex] \sf{x = {y}^{4} \: \: \: \: \: \: \: \: \: \: \bigg[\rm\implies \:y = {\bigg(x\bigg) }^{\dfrac{1}{4} }\bigg] }[/tex]
So, on substituting these values, above integral can be rewritten as
[tex]\rm \: = \longmapsto\: \displaystyle\int\rm \frac{ {y}^{2} }{1 + {y}^{3} } \times {4y}^{3} \: [/tex]
[tex]\rm \: \longmapsto= \: 4\displaystyle\int\rm \frac{ {y}^{3} \times {y}^{2} }{1 + {y}^{3} } \:[/tex]
To evaluate this integral further, we substitute
[tex]\rm \: \longmapsto \: 1 + {y}^{3} = t1+y3=t[/tex]
[tex]\rm \:\longmapsto {y}^{3} = t - 1y3=t−1[/tex]
[tex]\sf \: \longmapsto{3y}^{2} \: dy \: = \: dt3y2[/tex]
[tex]\dfrac{dt}{3}[/tex]
So, on substituting these values in above integral, we get
[tex]\rm \: = \: 4\displaystyle\int\rm \frac{(t - 1)}{t} \: \times \dfrac{1}{3} \: [/tex]
[tex]\rm \: = \: \dfrac{4}{3} \displaystyle\int\rm \frac{(t - 1)}{t} \: [/tex]
[tex]\rm \: = \: \dfrac{4}{3} \displaystyle\int\rm \bigg[1 - \frac{1}{t} \bigg] \: [/tex]
[tex]\rm \: = \: \dfrac{4}{3} \bigg(t \: - \: log |t|\bigg) + c=34([/tex]
[tex]\rm \: = \: \dfrac{4}{3} \bigg( {y}^{3} + 1 \: - \: log | {y}^{3} + 1|\bigg) [/tex]
[tex]\rm \: = \: \dfrac{4}{3} \bigg[ {\bigg(x \bigg) }^{\dfrac{3}{4} } + 1 \: - \: log \bigg| {\bigg(x\bigg) }^{\dfrac{3}{4} } + 1\bigg|\bigg] \: [/tex]
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION
[tex] \sf{ \boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \ cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} }[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.