Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Step-by-step explanation:
[tex]\large\underline{\sf{Solution-}}[/tex]
Given integral is
[tex] \displaystyle\int\rm \frac{{\bigg( x\bigg) }^{\dfrac{1}{2} }}{1 + {\bigg( x \bigg) }^{\dfrac{3}{4} }} \: dx [/tex]
To evaluate this integral, we have to first remove the fractional exponents from the integrand.
So, we substitute
[tex] \sf{x = {y}^{4} \: \: \: \: \: \: \: \: \: \: \bigg[\rm\implies \:y = {\bigg(x\bigg) }^{\dfrac{1}{4} }\bigg] }[/tex]
So, on substituting these values, above integral can be rewritten as
[tex]\rm \: = \longmapsto\: \displaystyle\int\rm \frac{ {y}^{2} }{1 + {y}^{3} } \times {4y}^{3} \: [/tex]
[tex]\rm \: \longmapsto= \: 4\displaystyle\int\rm \frac{ {y}^{3} \times {y}^{2} }{1 + {y}^{3} } \:[/tex]
To evaluate this integral further, we substitute
[tex]\rm \: \longmapsto \: 1 + {y}^{3} = t1+y3=t[/tex]
[tex]\rm \:\longmapsto {y}^{3} = t - 1y3=t−1[/tex]
[tex]\sf \: \longmapsto{3y}^{2} \: dy \: = \: dt3y2[/tex]
[tex]\dfrac{dt}{3}[/tex]
So, on substituting these values in above integral, we get
[tex]\rm \: = \: 4\displaystyle\int\rm \frac{(t - 1)}{t} \: \times \dfrac{1}{3} \: [/tex]
[tex]\rm \: = \: \dfrac{4}{3} \displaystyle\int\rm \frac{(t - 1)}{t} \: [/tex]
[tex]\rm \: = \: \dfrac{4}{3} \displaystyle\int\rm \bigg[1 - \frac{1}{t} \bigg] \: [/tex]
[tex]\rm \: = \: \dfrac{4}{3} \bigg(t \: - \: log |t|\bigg) + c=34([/tex]
[tex]\rm \: = \: \dfrac{4}{3} \bigg( {y}^{3} + 1 \: - \: log | {y}^{3} + 1|\bigg) [/tex]
[tex]\rm \: = \: \dfrac{4}{3} \bigg[ {\bigg(x \bigg) }^{\dfrac{3}{4} } + 1 \: - \: log \bigg| {\bigg(x\bigg) }^{\dfrac{3}{4} } + 1\bigg|\bigg] \: [/tex]
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION
[tex] \sf{ \boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \ cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} }[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.