Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Yes, the set of vectors
V = {(x, y, z) : x - 2y + 3z = 0}
is indeed a vector space.
Let u = (x, y, z) and v = (r, s, t) be any two vectors in V. Then
x - 2y + 3z = 0
and
r - 2s + 3t = 0
Their vector sum is
u + v = (x + r, y + s, z + t)
We need to show that u + v also belongs to V - in other words, V is closed under summation. This is a matter of showing that the coordinates of u + v satisfy the condition on all vectors of V:
(x + r) - 2 (y + s) + 3 (s + t) = (x - 2y + 3z) + (r - 2s + 3t) = 0 + 0 = 0
Then V is indeed closed under summation.
Scaling any vector v by a constant c gives
cv = (cx, cy, cz)
We also need to show that cv belongs to V - that V is closed under scalar multiplication. We have
cx - 2cy + 3cz = c (x - 2y + 3z) = 0c = 0
so V is need closed under scalar multiplication.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.