Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
METHOD I:
(by using the first principle of differentiation)
We have the "Limit definition of Derivatives":
[tex]\boxed{\mathsf{f'(x)= \lim_{h \to 0} \{\frac{f(x+h)-f(x)}{h} \} ....(i)}}[/tex]
Here, f(x) = sec x, f(x+h) = sec (x+h)
- Substituting these in eqn. (i)
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \{\frac{sec(x+h)-sec(x)}{h} \} }[/tex]
- sec x can be written as 1/ cos(x)
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{1}{h} \{\frac{1}{cos(x+h)} -\frac{1}{cos(x)} \} }[/tex]
- Taking LCM
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{1}{h} \{\frac{cos(x)-cos(x+h)}{cos(x)cos(x+h)} \} }[/tex]
- By Cosines sum to product formula, i.e.,
[tex]\boxed{\mathsf{cos\:A-cos\:B=-2sin(\frac{A+B}{2} )sin(\frac{A-B}{2} )}}[/tex]
=> cos(x) - cos(x+h) = -2sin{(x+x+h)/2}sin{(x-x-h)/2}
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{2sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: \lim_{h \to 0} \frac{sin(\frac{h}{2} )}{h} }[/tex]
- I shifted a 2 from the first limit to the second limit, since the limits ar ein multiplication this transmission doesn't affect the result
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: \lim_{h \to 0} \frac{2sin(\frac{h}{2} )}{h} }[/tex]
- 2/ h can also be written as 1/(h/ 2)
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: \lim_{h \to 0} \frac{1\times sin(\frac{h}{2} )}{\frac{h}{2} } }[/tex]
- We have limₓ→₀ (sin x) / x = 1.
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: 1 }[/tex]
- h→0 means h/ 2→0
Substituting 0 for h and h/ 2
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+0)}{cos(x+0)cos(x)} }[/tex]
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x)}{cos(x)cos(x)} }[/tex]
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x)}{cos(x)}\times \frac{1}{cos x} }[/tex]
- sin x/ cos x is tan x whereas 1/ cos (x) is sec (x)
[tex]\implies \mathsf{f'(x)= tan(x)\times sec(x) }[/tex]
Hence, we got
[tex]\underline{\mathsf{\overline{\frac{d}{dx} (sec(x))=sec(x)tan(x)}}}[/tex]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
METHOD II:
(by using other standard derivatives)
[tex] \boxed{ \mathsf{ \frac{d}{dx} ( \sec \: x) = \sec x \tan x }}[/tex]
- sec x can also be written as (cos x)⁻¹
We have a standard derivative for variables in x raised to an exponent:
[tex] \boxed{ \mathsf{ \frac{d}{dx}(x)^{n} = n(x)^{n - 1} }}[/tex]
Therefore,
[tex] \mathsf{ \frac{d}{dx}( \cos x)^{ - 1} = - 1( \cos \: x) ^{( - 1 - 1} } \\ \implies \mathsf{\ - 1( \cos \: x) ^{- 2 }}[/tex]
- Any base with negative exponent is equal to its reciprocal with same positive exponent
[tex] \implies \: \mathsf{ - \frac{1}{ (\cos x) {}^{2} } }[/tex]
The process of differentiating doesn't just end here. It follows chain mechanism, I.e.,
while calculating the derivative of a function that itself contains a function, the derivatives of all the inner functions are multiplied to that of the exterior to get to the final result.
- The inner function that remains is cos x whose derivative is -sin x.
[tex] \implies \mathsf{ - \frac{1}{ (\cos x )^{2} } \times ( - \sin x) }[/tex]
- cos²x can also be written as (cos x).(cos x)
[tex] \implies \mathsf{ \frac{ \sin x }{ \cos x } \times ( \frac{1}{cos x} ) }[/tex]
- sin x/ cos x is tan x, while 1/ cos x is sec x
[tex] \implies \mathsf{ \tan x \times \sec x }[/tex]
= sec x. tan x
Hence, Proved!
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.