Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer: -2
======================================================
Work Shown:
[tex]\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{x-1}-2x }{ x-7 }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \frac{1}{x}\left(\sqrt{x-1}-2x\right) }{ \frac{1}{x}\left(x-7\right) }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \frac{1}{x}*\sqrt{x-1}-\frac{1}{x}*2x }{ \frac{1}{x}*x-\frac{1}{x}*7 }\\\\\\[/tex]
[tex]\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x^2}}*\sqrt{x-1}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x^2}*(x-1)}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x}-\frac{1}{x^2}}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \frac{ \sqrt{0-0}-2 }{ 1-0 }\\\\\\\displaystyle L = \frac{-2}{1}\\\\\\\displaystyle L = -2\\\\\\[/tex]
-------------------
Explanation:
In the second step, I multiplied top and bottom by 1/x. This divides every term by x. Doing this leaves us with various inner fractions that have the variable in the denominator. Those inner fractions approach 0 as x approaches infinity.
I'm using the rule that
[tex]\displaystyle \lim_{x\to\infty} \frac{1}{x^k} = 0\\\\\\[/tex]
where k is some positive real number constant.
Using that rule will simplify the expression greatly to leave us with -2/1 or simply -2 as the answer.
In a sense, the leading terms of the numerator and denominator are -2x and x respectively. They are the largest terms for each, so to speak. As x gets larger, the influence that -2x and x have will greatly diminish the influence of the other terms.
This effectively means,
[tex]\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{x-1}-2x }{ x-7 } = \lim_{x\to\infty} \frac{ -2x }{ x} = -2\\\\\\[/tex]
I recommend making a table of values to see what's going on. Or you can graph the given function to see that it slowly approaches y = -2. Keep in mind that it won't actually reach y = -2 itself.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.