Answered

Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

[tex]\sf \lim_{x \to \infty} \cfrac{\sqrt{x-1}-2x }{x-7}[/tex]

Sagot :

Answer:  -2

======================================================

Work Shown:

[tex]\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{x-1}-2x }{ x-7 }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \frac{1}{x}\left(\sqrt{x-1}-2x\right) }{ \frac{1}{x}\left(x-7\right) }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \frac{1}{x}*\sqrt{x-1}-\frac{1}{x}*2x }{ \frac{1}{x}*x-\frac{1}{x}*7 }\\\\\\[/tex]

[tex]\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x^2}}*\sqrt{x-1}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x^2}*(x-1)}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x}-\frac{1}{x^2}}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \frac{ \sqrt{0-0}-2 }{ 1-0 }\\\\\\\displaystyle L = \frac{-2}{1}\\\\\\\displaystyle L = -2\\\\\\[/tex]

-------------------

Explanation:

In the second step, I multiplied top and bottom by 1/x. This divides every term by x. Doing this leaves us with various inner fractions that have the variable in the denominator. Those inner fractions approach 0 as x approaches infinity.

I'm using the rule that

[tex]\displaystyle \lim_{x\to\infty} \frac{1}{x^k} = 0\\\\\\[/tex]

where k is some positive real number constant.

Using that rule will simplify the expression greatly to leave us with -2/1 or simply -2 as the answer.

In a sense, the leading terms of the numerator and denominator are -2x and x respectively. They are the largest terms for each, so to speak. As x gets larger, the influence that -2x and x have will greatly diminish the influence of the other terms.

This effectively means,

[tex]\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{x-1}-2x }{ x-7 } = \lim_{x\to\infty} \frac{ -2x }{ x} = -2\\\\\\[/tex]

I recommend making a table of values to see what's going on. Or you can graph the given function to see that it slowly approaches y = -2. Keep in mind that it won't actually reach y = -2 itself.

We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.