At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Using the z-distribution, it is found that since the absolute value of the test statistic is less than the critical value, the difference in the sample proportions is not statistically significant at the 1% level.
At the null hypothesis, we test if the proportions are the same, that is, their subtraction is 0, hence:
[tex]H_0: p_1 - p_2 = 0[/tex]
At the alternative hypothesis, it is tested if they are different, that is, their subtraction is not 0, hence:
[tex]H_1: p_1 - p_2 \neq 0[/tex]
The proportions and their respective standard errors are given by:
[tex]p_1 = \frac{653}{1046} = 0.6343, s_1 = \sqrt{\frac{0.6343(0.3657)}{1046}} = 0.0149[/tex]
[tex]p_2 = \frac{791}{1327} = 0.5961, s_2 = \sqrt{\frac{0.5961(0.4039)}{1327}} = 0.0135[/tex]
For the distribution of the difference, the mean and the standard error are given by:
[tex]\overline{p} = p_1 - p_2 = 0.6343 - 0.5961 = 0.0382[/tex]
[tex]s = \sqrt{s_1^2 + s_2^2} = \sqrt{0.0149^2 + 0.0135^2} = 0.0201[/tex]
The test statistic is:
[tex]z = \frac{\overline{p} - p}{s}[/tex]
In which [tex]p = 0[/tex] is the value tested at the null hypothesis.
Hence:
[tex]z = \frac{\overline{p} - p}{s}[/tex]
[tex]z = \frac{0.0382 - 0}{0.0201}[/tex]
[tex]z = 1.9[/tex]
The critical value for a two-tailed test, as we are testing if two values are different, with a significance level of 0.01, is of [tex]|z^{\ast}| = 2.576[/tex]
Since the absolute value of the test statistic is less than the critical value, the difference in the sample proportions is not statistically significant at the 1% level.
A similar problem is given at https://brainly.com/question/25728144
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.