Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Using continuous compounding and compound interest, it is found that Matthew would have $17 more than Elizabeth in his account.
Compound interest:
[tex]A(t) = P\left(1 + \frac{r}{n}\right)^{nt}[/tex]
Continuous compounding:
[tex]A(t) = Pe^{rt}[/tex]
The parameters are:
- A(t) is the amount of money after t years.
- P is the principal(the initial sum of money).
- r is the interest rate(as a decimal value).
- n is the number of times that interest is compounded per year.
- t is the time in years for which the money is invested or borrowed.
For both of them:
- Investment of $970, hence [tex]P = 970[/tex]
- Invested for 8 years, hence [tex]t = 8[/tex]
Elizabeth:
- Compounded daily, hence [tex]n = 365[/tex].
- Rate, as a percent, of [tex]6\frac{5}{8} = 6 + \frac{5}{8} = 6.625[/tex], hence [tex]r = 0.06625[/tex].
Then:
[tex]A(t) = P\left(1 + \frac{r}{n}\right)^{nt}[/tex]
[tex]A(8) = 970\left(1 + \frac{0.06625}{365}\right)^{365(8)}[/tex]
[tex]A(8) = 1648[/tex]
Matthew:
- Rate, as a percent, of [tex]6\frac{3}{4} = 6 + \frac{3}{4} = 6.75[/tex], hence [tex]r = 0.0675[/tex].
Then:
[tex]A(t) = Pe^{rt}[/tex]
[tex]A(8) = 970e^{0.0675(8)}[/tex]
[tex]A(8) = 1665[/tex]
The difference is:
1665 - 1648 = 17
Hence, Matthew would have $17 more than Elizabeth in his account.
A similar problem is given at https://brainly.com/question/24507395
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.