Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

3.) Write the equation of a quadratic function that is shifted down 4 and horizontally compressed by 1/5

3 Write The Equation Of A Quadratic Function That Is Shifted Down 4 And Horizontally Compressed By 15 class=

Sagot :

Answer:

[tex]5x^2 - 4[/tex]

Step-by-step explanation:

For shifted down a function you have to follow the next structured:

[tex]f(x) - c[/tex]

In our case is:

[tex]x^2 - 4[/tex]

Now for compressed or shrink a graph you have to multiply by a factor in the input something like this:

[tex]f(cx)[/tex]

In our case is:

[tex]5x^2[/tex]

Maybe you can think, why 5 and not [tex]\frac{1}{5}[/tex] instead?. Well, when you multiply by [tex]\frac{1}{5}[/tex] this dilate or stretch the graft because the output of each value is smaller, example:

[tex]f(x) = x^2\\g(x) = \frac{1}{5} x^2[/tex]

Then evaluate for a number, for example 5:

[tex]f(5) = 25\\g(5) = 5[/tex]

the output of [tex]g(x)[/tex] is 5 steps a far from the answer of [tex]f(x)[/tex] this in a graph is illustrate as a stretching.

So the opposite happen when you multiply by a integer number, the graph is compressed because the output take the "faster steps".

So combine the two transformation and get [tex]5x^2 - 4[/tex]