Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Using conditional probability, it is found that there is a 0.9556 = 95.56% probability that Juan chose to get home from work by bus, given that he arrived home after 7 p.m.
Conditional Probability
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
- P(B|A) is the probability of event B happening, given that A happened.
- [tex]P(A \cap B)[/tex] is the probability of both A and B happening.
- P(A) is the probability of A happening.
In this problem:
- Event A: Arrived home after 7 p.m.
- Event B: Got home by bus.
The percentages associated with arriving home after 7 p.m. are:
- 14% of 17%(by car).
- 62% of 83%(by bus).
Hence:
[tex]P(A) = 0.14(0.17) + 0.62(0.83) = 0.5384[/tex]
The probability of both arriving home after 7 p.m. and using bus is:
[tex]P(A \cap B) = 0.62(0.83)[/tex]
Hence, the conditional probability is:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.62(0.83)}{0.5384} = 0.9556[/tex]
0.9556 = 95.56% probability that Juan chose to get home from work by bus, given that he arrived home after 7 p.m.
You can learn more about conditional probability at https://brainly.com/question/14398287
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.