At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let A be a 3×2 matrix, L its left inverse, and R its right inverse. L and R are then matrices such that LA = I₂ (the 2×2 identity matrix) and AR = I₃ (the 3×3 identity matrix). Clearly L must be 2×3 and R must be 3×2 in order for the matrix products to be defined.
To find L and R, we start by introducing a square matrix on the the left sides of either equation above. In particular, we uniformly multiply both sides by the transpose of A, then solve for the inverse.
For the left inverse, we have
[tex]LA=I[/tex]
[tex](LA)A^\top = IA^\top[/tex]
[tex]L\left(AA^\top\right) = A^\top[/tex]
[tex]\left(L\left(AA^\top\right)\right)\left(AA^\top\right)^{-1} = A^\top \left(AA^\top\right)^{-1}[/tex]
[tex]L\left(\left(AA^\top\right)\left(AA^\top\right)^{-1}\right) = A^\top \left(AA^\top\right)^{-1}[/tex]
[tex]LI = A^\top \left(AA^\top\right)^{-1}[/tex]
[tex]L = A^\top \left(AA^\top\right)^{-1}[/tex]
We do the same thing for the right inverse, but take care with how we multiply both sides of AR = I₃.
[tex]AR=I[/tex]
[tex]A^\top(AR)=A^\top I[/tex]
[tex]\left(A^\top A\right)R = A^\top[/tex]
[tex]\left(A^\top A\right)^{-1} \left(\left(A^\top A\right)R\right) = \left(A^\top A\right)^{-1} A^\top[/tex]
[tex]\left(\left(A^\top A\right)^{-1} \left(A^\top A\right)\right) R = \left(A^\top A\right)^{-1} A^\top[/tex]
[tex]IR = \left(A^\top A\right)^{-1} A^\top[/tex]
[tex]R = \left(A^\top A\right)^{-1} A^\top[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.