Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let A be a 3×2 matrix, L its left inverse, and R its right inverse. L and R are then matrices such that LA = I₂ (the 2×2 identity matrix) and AR = I₃ (the 3×3 identity matrix). Clearly L must be 2×3 and R must be 3×2 in order for the matrix products to be defined.
To find L and R, we start by introducing a square matrix on the the left sides of either equation above. In particular, we uniformly multiply both sides by the transpose of A, then solve for the inverse.
For the left inverse, we have
[tex]LA=I[/tex]
[tex](LA)A^\top = IA^\top[/tex]
[tex]L\left(AA^\top\right) = A^\top[/tex]
[tex]\left(L\left(AA^\top\right)\right)\left(AA^\top\right)^{-1} = A^\top \left(AA^\top\right)^{-1}[/tex]
[tex]L\left(\left(AA^\top\right)\left(AA^\top\right)^{-1}\right) = A^\top \left(AA^\top\right)^{-1}[/tex]
[tex]LI = A^\top \left(AA^\top\right)^{-1}[/tex]
[tex]L = A^\top \left(AA^\top\right)^{-1}[/tex]
We do the same thing for the right inverse, but take care with how we multiply both sides of AR = I₃.
[tex]AR=I[/tex]
[tex]A^\top(AR)=A^\top I[/tex]
[tex]\left(A^\top A\right)R = A^\top[/tex]
[tex]\left(A^\top A\right)^{-1} \left(\left(A^\top A\right)R\right) = \left(A^\top A\right)^{-1} A^\top[/tex]
[tex]\left(\left(A^\top A\right)^{-1} \left(A^\top A\right)\right) R = \left(A^\top A\right)^{-1} A^\top[/tex]
[tex]IR = \left(A^\top A\right)^{-1} A^\top[/tex]
[tex]R = \left(A^\top A\right)^{-1} A^\top[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.