Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Given that 27^1/3= 9^14 + 3^x+1
find the exact value of x


Sagot :

If the given equation is

[tex]27^{\frac13} = 9^{14} + 3^{x + 1}[/tex]

first simplify the left side using the fact that 27 = 3³:

[tex]27^{\frac13} = (3^3)^{\frac13} = 3^{\frac33} = 3^1 = 3[/tex]

and on the right side, 9 = 3²:

[tex]9^{14} = (3^2)^{14} = 3^{2\times14} = 3^{28}[/tex]

So we have

[tex]3 = 3^{28} + 3^{x + 1}[/tex]

Next,

[tex]3^{x+1} = 3^x \times 3^1 = 3 \times 3^x[/tex]

so that

[tex]3 = 3^{28} + 3 \cdot 3^x[/tex]

and dividing both side by 3 gives

[tex]1 = 3^{27} + 3^x[/tex]

Isolate 3ˣ :

[tex]3^x = 1 - 3^{27}[/tex]

Solve for x by taking the base-3 logarithm of both sides:

[tex]\log_3(3^x) = \log_3(1-3^{27})[/tex]

[tex]x \log_3(3) = \log_3(1-3^{27})[/tex]

[tex]\boxed{x = \log_3(1-3^{27})}[/tex]