Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
From the given figure ,
RECA is a quadrilateral
RC divides it into two parts
From the triangles , ∆REC and ∆RAC
RE = RA (Given)
angle CRE = angle CRA (Given)
RC = RC (Common side)
Therefore, ∆REC is Congruent to ∆RAC
∆REC =~ ∆RAC by SAS Property
⇛CE = CA (Congruent parts in a congruent triangles)
Hence , Proved
Additional comment:-
SAS property:-
"The two sides and included angle of one triangle are equal to the two sides and included angle then the two triangles are Congruent and this property is called SAS Property (Side -Angle-Side)
also read similar questions: Complete this proof. Given: EC AC, DB AC, ∠A = ∠F Prove: ΔMDF ∼ ΔNCA..
https://brainly.com/question/16250124?referrer
Consider the proof. Given: Segment AB is parallel to line DE. Prove: AD/DC = BE/EC What is the missing statement in Step 5? A.) AC = BC B.) AC/DC = BC/EC C.) AD...
https://brainly.com/question/11763540?referrer
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.