Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Using the normal distribution, it is found that 0.26% of the items will either  weigh less than 87 grams or more than  93 grams.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean. Â
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem:
- The mean is of 90 grams, hence [tex]\mu = 90[/tex].
- The standard deviation is of 1 gram, hence [tex]\sigma = 1[/tex].
We want to find the probability of an item differing more than 3 grams from the mean, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{3}{1}[/tex]
[tex]Z = 3[/tex]
The probability is P(|Z| > 3), which is 2 multiplied by the p-value of Z = -3.
- Looking at the z-table, Z = -3 has a p-value of 0.0013.
2 x 0.0013 = 0.0026
0.0026 x 100% = 0.26%
0.26% of the items will either  weigh less than 87 grams or more than  93 grams.
For more on the normal distribution, you can check https://brainly.com/question/24663213
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.