Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Write an exponential function in the form y=ab^x that goes through points (0, 17) and (2,153).
lol guys i need help on my delta math


Sagot :

Answer:

y = 17*(3)ˣ

Step-by-step explanation:

y=abˣ

(0,17) : 17 = a*b⁰ = a

(2,153) : 153 = a*b² = 17*b²

b² = 153/17 = 9

b = ± 3  ... (0,17) and (2,153) in first quadrant   b = 3

function: y = 17*(3)ˣ

y = 17([tex]3^x[/tex]) is the needed exponential function that runs across locations (0, 17) and (2, 153).

Exponential Function:

The Exponential Function is a mathematical function that describes the relationship between two variables.

The real-valued function is always positive. e^x is the most well-known exponential function, with e as the base and x as the exponent.

What is the formula for computing an exponential function?

Let y = ab^x be the necessary exponential function.

We must now use the supplied circumstances to determine constants A and k.

Due to the fact that this exponential function goes through the position (0, 17)

Therefore

3 = ab^0

a = 17

In addition, the exponential function goes through the point (2, 153)

Therefore

153 = a b^2

Substitute the value of a

17b^2 = 153

b^2 = 9

b = ±3

Since b is base of the exponential function and base can not be negative for that therefore

b = 3

We now have an exponential function equation with these values.

y = 17(3^x)

This is the required exponential function.

Learn more about exponential function here-

https://brainly.com/question/11464095

#SPJ2

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.