Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

The number of fish in a lake is decreasing by 400 every year, as described by the function below.
f(1)=8200

f(n+1)=f(n)-400
A. 6200
B. 6600
C. 7000
D. 7800

Sagot :

The number of fish in the lake follows an arithmetic sequence

The number of fish in the lake the second year is 7800, and it is represented by f(2)  

 

The model of the number of fish is given as:

[tex]\mathbf{f(n + 1) = f(n) - 400}[/tex]

Such that:

[tex]\mathbf{f(1) = 8200}[/tex]

Set n = 1, to calculate f(2)

Substitute 1 for n in the given model [tex]\mathbf{f(n + 1) = f(n) - 400}[/tex]

So, we have:

[tex]\mathbf{f(n + 1) = f(n) - 400}[/tex]

[tex]\mathbf{f(1 + 1) = f(1) - 400}[/tex]

Simplify, by adding 1 and 1

[tex]\mathbf{f(2) = f(1) - 400}[/tex]

Substitute 8200 for f(1)

[tex]\mathbf{f(2) = 8200 - 400}[/tex]

Subtract 400 from 8200

[tex]\mathbf{f(2) = 7800}[/tex]

Hence, the value of f(2) is 7800

Read more about arithmetic sequence at:

https://brainly.com/question/25759461

Answer:

D

Step-by-step explanation: